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A modified profile optimization method using a smoothest shape modification strategy
(POSSEM) is developed for airfoil shape optimization in a preliminary design environment.
POSSEM is formulated to overcome two technical difficulties frequently encountered when
conducting multipoint airfoil optimization within a high-resolution design space: the gen-
eration of undesirable optimal airfoil shapes due to high frequency components in the
parametric geometry model and significant degradation in the off-design performance. To
demonstrate the usefulness of POSSEM in a preliminary design environment, a design com-
petition was conducted with the objective of improving a fairly well-designed baseline airfoil
at four transonic flight conditions without incurring any off-design performance degrada-
tion. Independently, two designs were generated from the inverse design tool CDISC,
while a third design was generated from POSSEM using over 200 control points of a cubic
B-spline curve representation of the airfoil as design variables for the shape optimization.
Pros and cons of all the airfoil designs are documented along with in-depth analyses of
simulation results. The POSSEM design exhibits a fairly smooth curvature and no degra-
dation in the off-design performance. Moreover, it has the lowest average drag among the
three designs at the design conditions, as evaluated from three different flow solvers. This
study demonstrates the potential of POSSEM as a practical airfoil optimization tool for
use in a preliminary design environment. The novel ideas used in POSSEM, such as the
smoothest shape modification and modified profile optimization strategies, are applicable
to minimizing aircraft drag at multiple flight conditions.

Nomenclature

c chord length
cd drag coefficient
cl lift coefficient
c∗l,i target lift coefficient at the ith design condition
cm pitching moment
cp pressure coefficient
D vector of airfoil shape parameters
F feasible set of design vectors D
g(t) parametric form of the y-coordinate of the points on an airfoil
L/D lift to drag ratio
M free-stream Mach number
r number of design conditions
S(∆D) smoothness measure of the airfoil modification due to change of design vector ∆D
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t variable of a function defined on the interval [0, 1]
x, y cartesian coordinates of point on airfoil
W 2,∞ Sobolev space of functions with bounded second derivatives
α angle of attack
δ magnitude of smoothness measure
∆cd change in drag coefficient
∆cl change in lift coefficient
∆D change of D
∆g(t) parametric form of the y-coordinate change of point on an airfoil
(∆g)′(t) first derivative of ∆g(t)
(∆g)′′(t) second derivative of ∆g(t)
∆g(3)(t) third derivative of ∆g(t)
∆α change of α
εave average drag reduction at the design conditions
εmin lower bound for acceptable average drag reduction at the design conditions
γend terminal maximum drag reduction rate
γk maximum drag reduction rate at the kth iteration
γ0 initial maximum drag reduction rate
ρ scaling factor for adjusting the magnitude of smoothness measure
τi performance gain factor for the ith design condition
‖f‖∞ maximum absolute value of a function f(t) on the interval [0, 1]
∂cd

∂α partial derivative of drag coefficient with respect to α
∂cd

∂D gradient of drag coefficient with respect to D
∂cl

∂α partial derivative of lift coefficient with respect to α
∂cl

∂D gradient of lift coefficient with respect to D

Subscripts and superscripts

i index for the ith design condition
k index of optimization iteration

I. Introduction

Engineering design of a complex subsystem (e.g., an airplane wing) consists of three stages: conceptual
design1 (when the wing platform parameters, such as span length, maximum thickness, taper ratio, sweep
angle, and aspect ratio, are determined), preliminary design (when the wing shape is determined), and
detailed design (when the detailed plan for manufacturing the wing is determined). In a preliminary design
environment, designers can quickly identify a fairly good baseline design and then concentrate on improving
its performance. In some cases, designers are tasked to improve an existing good design, such as the redesign
of a transonic commercial transport, for 2-3% performance gain from a more efficient aerodynamic shape
(see [2, p. 34]).

To demonstrate that an airfoil optimization tool can be truly useful in a preliminary design environment,
we must show that the tool can uncover subtle performance gain with nonintuitive shape modifications
guided by simulation analysis when started from a fairly good baseline design. Because the baseline is
close to an optimal design, it becomes almost impossible to find meaningful performance gain by searching
for an optimal shape in a low-resolution design space (represented by a geometry model with a few shape
parameters). An airfoil optimization example was given by Li and Padula3 to show how performance gain
can be adversely affected by low resolution of the design space.

To do aerodynamic shape optimization in a high-resolution design space (represented by a geometry
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model with many shape parameters), one faces the challenge on how to avoid undesirable oscillatory shapes
due to high frequency components in the parametric geometry model. Earlier attempts to use free-form
airfoil shape parameterization (such as curves with 23 sinusoidal basis functions4 and cubic B-spline curves
with 36 control points5) led to numerically optimal airfoils with undesirable shapes and oscillatory drag rise
curves over a Mach range when multipoint airfoil optimization methods were used. In practice, one could
smooth generated optimal airfoil shapes to get rid of undesirable curvature features, but smoothing the shape
might nullify some or all of the obtained performance gain. Jameson and his collaborators6–8 suggested the
use of a smoothed gradient of the objective function for shape modification. For constrained optimization,
one could project the smoothed gradient into the feasible space.7 These approaches only address the need for
smooth shape modification after the optimization algorithm predicts the best possible shape modification for
performance gain. There is no guarantee that the smoothed shape modification is a descent direction for the
objective function. In this paper, we propose to use the smoothest shape modification (SSEM) strategy for
drag minimization under lift constraints. This method finds the best possible smooth shape modification for
performance gain in a Sobolev space9 that is appropriate for the definition of the gradients of aerodynamic
coefficients. See [3, Section 2] and [7, Subsection 5.1] for some explanation on why a Sobolev space is needed
for definition of the gradients of aerodynamic coefficients.

Another challenging issue associated with aerodynamic shape optimization in a high-resolution design
space is off-design performance degradation. High-resolution design space allows a multipoint optimization
algorithm to exploit the weakness of the optimization formulation due to lack of information on off-design
performance and to trade marginal performance gains at the design conditions with severe off-design perfor-
mance degradation.4,10 Petropoulou et al.11 studied multipoint airfoil optimization with airfoils parameter-
ized by Bezier curves with 34 control points; however, they had no discussion on airfoil curvature oscillation
and off-design performance. Recently, Li and Padula12,13 demonstrated that a robust airfoil optimization
method, called the profile optimization method (POM),10 can find an optimal airfoil with improved per-
formance over a baseline in a range of transonic flight conditions. In particular, the POM was applied to
improve the performance of an advanced airfoil used by designers as the baseline airfoil for a transonic wing
configuration in a range of Mach numbers.12 The demonstrated benefit of POM was received by a design
team with mixed feelings of excitement and doubt: the optimal airfoil does have 5–10% performance improve-
ment over the baseline in a range of transonic flight conditions, but its curvature profile is too oscillatory.
Therefore, the main purpose of this paper is to show that a modified POM using SSEM (called POSSEM)
can generate optimal airfoils with fairly smooth curvature and improved performance in a specified range of
flight conditions, even though the baseline is well-designed for the specified flight conditions and the design
space is parameterized by over 200 design variables.

To demonstrate the usefulness of an aerodynamic shape optimization tool (such as POSSEM) in a prelim-
inary design environment, there is one more obstacle to overcome: demonstrating that the tool can generate
aerodynamic shapes as good as or better than what the state-of-the-art design process can produce. A state-
of-the-art tool for preliminary aerodynamic shape design commonly used at Langley Research Center and
in industry is CDISC, developed by Campbell.14 CDISC is a knowledge-based inverse design tool. In each
design cycle, a designer specifies characteristics of a target pressure distribution, and CDISC modifies the
current aerodynamic shape iteratively to generate a new shape that has the desired pressure characteristics.
For transonic commercial aircraft wing design, the primary goal is to improve the wing performance at the
cruise condition(s) without severe penalty at off-design conditions. By trial and error, a designer learns how
to achieve performance gains without severe off-design performance degradation and generates an overall
best design within the time and resources allocated. It is often impossible to incorporate all the conflicting
design goals and requirements that a designer might consider during the design process into an optimization
formulation. Therefore, a practical concern is whether any airfoil optimization method (such as POSSEM),
which uses performance information at only a few design conditions, can generate optimal airfoils that are
as good as or better than airfoils generated by experienced designers using CDISC.

To address the last concern, we start a design competition with a fairly well-designed supercritical airfoil
(denoted by D0) as the baseline airfoil. The objective is to improve the performance of D0 at four transonic
flight conditions as much as possible without incurring any undesirable off-design performance degradation
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or any undesirable shape characteristics. In other words, any candidate airfoil design not only must have
good performance when analyzed by flow simulation codes, but also should look like a realistic transonic
airfoil.

For the design competition, the first candidate airfoil was generated by using CDISC14 with MSES15

for a multipoint design, the second candidate airfoil was designed by using CDISC with OVERFLOW,16

and the third candidate airfoil was developed through application of the POSSEM method using the adjoint
sensitivity information from FUN2D.17,18 To assess the effect of the different flow solvers on the performance
characteristics, each of the three candidate airfoils was analyzed by all three codes. Pros and cons of all the
candidate airfoil designs are documented along with in-depth analyses of simulation results.

The paper is organized as follows. In section II, we introduce a Sobolev space appropriate for variational
analysis of the gradients of lift and drag coefficients in two-dimensional transonic viscous flow, and we define a
curvature smoothness measure for cubic B-spline parameterization of airfoils that captures both smoothness
and magnitude of airfoil shape modification in the Sobolev space. Section III contains a detailed description
of POSSEM. In section IV, we document how the baseline airfoil and three candidate airfoil designs are
generated for the design competition. Detailed discussions of the performance analysis results for the three
airfoil designs are included in section V. The final section VI concludes the paper.

II. Curvature Smoothness Measure for Shape Modification

A key component of POSSEM that differentiates it from POM is use of the SSEM strategy in determining
the most appropriate descent direction. In this section, we introduce the curvature smoothness measure which
underlies the SSEM formulation.

It is well-known that efficient aerodynamic shapes are smooth. Thus, it is not surprising that airfoil
smoothing is a part of many airfoil design or optimization processes. For example, Jameson et al.6–8 used
a smoothed gradient to modify the current aerodynamic shape within each optimization iteration, while
curvature smoothing is an integral part of CDISC inverse design process. Besides the practical need for
smooth aerodynamic shapes, smooth shape modification is necessary to ensure the accuracy of linear Taylor
approximations of aerodynamic coefficients3 because the gradients of aerodynamic coefficients are defined
in a Sobolev space.7,9 To our knowledge, a precise definition of the appropriate Sobolev space needed for
variational analysis of the gradients of lift and drag coefficients in Navier-Stokes flow has yet to be formulated.
However, it is known that in subsonic flow, change of pressure coefficient is proportional to change of airfoil
curvature, which is one rule used in CDISC (see [14, p. 5]). This rule implies that variational analysis of
the gradients of lift and drag coefficients with respect to airfoil shape involves the second derivative of the
airfoil shape.

Let y = g(t) (0 ≤ t ≤ 1) be a parametric representation of the y-coordinate of a point on an airfoil. An
airfoil shape change can be facilitated by a change in g(t), denoted by ∆g(t). The important issue is how
to measure the “size” of a shape modification represented by ∆g(t). From a geometric perspective, ∆g(t)
is considered to be a minor modification if the maximum value of |∆g(t)| is small. This definition of “size”
makes sense under visual inspection of the modification to the shape. However, for gradients obtained via
variational analysis, a small maximum value of |∆g(t)| does not imply a small shape modification in the
Sobolev space required for the definition of the gradients of aerodynamic coefficients and cannot ensure the
accuracy of the linear Taylor approximations of the lift and drag coefficients.3 Instead, the accuracy of linear
Taylor approximations of the lift and drag coefficients depends on the magnitude of the second derivative
(∆g)′′(t) of ∆g(t). Based on the CDISC rule mentioned above, we conjecture that

∆cl =
〈

∂cl

∂g
,∆g

〉
+ o
(
‖∆g‖∞ + ‖(∆g)′′‖∞

)
,

∆cd =
〈

∂cd

∂g
,∆g

〉
+ o
(
‖∆g‖∞ + ‖(∆g)′′‖∞

)
,

 (1)

where ∆cl and ∆cd denote the actual changes in cl and cd due to the shape change ∆g(t), ∂cl

∂g and ∂cd

∂g

denote the gradients of cl and cd with respect to the shape change ∆g(t), respectively, 〈·, ·〉 denotes the value

4 of 22

American Institute of Aeronautics and Astronautics



of applying the gradient to a given shape change ∆g(t), ‖∆g‖∞ (or ‖(∆g)′′‖∞) is the maximum value of
|∆g(t)| (or |(∆g)′′(t)|) for 0 ≤ t ≤ 1, and the last error term in (1) satisfies the following condition:

o
(
‖∆g‖∞ + ‖(∆g)′′‖∞

)
‖∆g‖∞ + ‖(∆g)′′‖∞

approaches zero as ‖∆g‖∞ + ‖(∆g)′′‖∞ goes to zero.

The expression ‖∆g‖∞ + ‖(∆g)′′‖∞ is called the norm of ∆g(t) in the Sobolev space W 2,∞ (the space of
functions with bounded second derivatives). Therefore, to ensure the accuracy of linear Taylor approxima-
tions of cl and cd, we use a shape modification ∆g(t) such that ‖∆g‖∞ + ‖(∆g)′′‖∞ is small (i.e., ∆g(t) has
a small norm in W 2,∞).

If we use a parametric cubic B-spline representation of an airfoil modification ∆g(t), then the third
derivative ∆g(3)(t) of the cubic spline ∆g(t) is a piecewise constant function, i.e.,

∆g(3)(t) = vj for tj−1 < t < tj , 1 ≤ j ≤ n, (2)

where 0 = t0 < t1 < · · · < tn = 1 are the knots of the cubic spline ∆g(t) and vj are scalars. Let ∆D denote
the column vector of all B-spline coefficients of ∆g(t) (i.e., y-coordinates of the control points for the B-spline
representation of the airfoil modification). Then each vj is a linear function of ∆D. As a consequence, there
is a matrix S such that the jth component of the matrix-vector product S(∆D) is vj . It follows from (2) that
the maximum value of |∆g(3)(t)| is the maximum absolute value of the components of S(∆D). Therefore,
we can impose an upper bound δ on |∆g(3)(t)| by using the following system of linear inequalities:

−δ ≤ S(∆D) ≤ δ, (3)

which means that each component of the vector S(∆D) is bounded below by −δ and above by δ. If δ = 0,
then (3) forces ∆g(t) to be a quadratic function of t, resulting in a very smooth but not necessarily small
shape modification. Obviously, increasing δ leads to an airfoil shape modification with more oscillatory
curvature.

The parameter δ in (3) not only controls the curvature smoothness of ∆g(t), but also can be used to
control the magnitude of ∆g(t) in W 2,∞, provided that a few standard airfoil geometry constraints are
imposed. One standard geometry constraint is to fix the leading edge (LE) position at y/c = 0, i.e.,

∆g
(
tLE

)
= 0, (4)

where tLE is the parameter value corresponding to the LE. Also, structural requirements lead to thickness
constraints at two spar locations:

∆g
(
t+1

)
= ∆g

(
t−1

)
and ∆g

(
t+2

)
= ∆g

(
t−2

)
, (5)

where t+j and t−j (j = 1, 2) are parameter values corresponding to two spar locations at the upper and lower
surfaces, respectively.

The curvature smoothness constraint (3), together with the three constraints given in (4) and (5), ensures
that a small δ results in a small shape modification ∆g(t) in W 2,∞. In fact, by Rolle’s theorem, (5) implies
that there are two zeros t∗1 and t∗2 of the first derivative of ∆g(t) (i.e., (∆g)′(t∗1) = (∆g)′(t∗2) = 0), which
means that there is also a zero t∗ of the second derivative of ∆g (i.e., (∆g)′′(t∗) = 0). As a consequence, we
have the following estimate for the second derivative of ∆g(t):

|(∆g)′′(t)| =
∣∣∣∣∫ t

t∗
∆g(3)(t) dt

∣∣∣∣ ≤ ∣∣∣∣∫ t

t∗
‖∆g(3)‖∞ dt

∣∣∣∣ ≤ ‖∆g(3)‖∞,

where ‖∆g(3)‖∞ = max
0≤t≤1

|∆g(3)(t)|. Similarly, the first derivative of ∆g(t) can also be bounded above by

‖∆g(3)‖∞:

|(∆g)′(t)| =

∣∣∣∣∣
∫ t

t∗1

(∆g)′′(t) dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ t

t∗1

‖∆g(3)‖∞ dt

∣∣∣∣∣ ≤ ‖∆g(3)‖∞.
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Finally,

|∆g(t)| =
∣∣∣∣∫ t

tLE

(∆g)′(t) dt

∣∣∣∣ ≤ ∣∣∣∣∫ t

tLE

‖∆g(3)‖∞ dt

∣∣∣∣ ≤ ‖∆g(3)‖∞.

In other words, with fixed LE and two thickness constraints, decreasing δ in (3) reduces the Sobolev norm of
∆g(t) in W 2,∞ and, thus, improves the accuracy of the linear Taylor approximations of cl and cd. Therefore,
we will use (3) to define the trust regions for airfoil shape optimization. The scalar δ in (3) controls not
only the curvature smoothness of the shape modification, but also the magnitude of the shape modification
in W 2,∞.

III. Modified Profile Optimization Using Smoothest Shape Modification

Based on parametric cubic B-spline representation of airfoils, SSEM uses the curvature smoothness con-
straint (3) to define trust regions in a sequential linear programming method for multiobjective optimization.
The trust region defined by (3) forces the optimization algorithm to find a globally smooth shape modifica-
tion for performance gain instead of using local shock bumps to improve the performance at a few specified
design conditions, even though the latter is the “right” thing to do numerically due to the lack of performance
information at off-design conditions.

To describe the airfoil optimization problem, the following notation is introduced. Let c∗l,i be the target
lift coefficient at the free-stream Mach number Mi for 1 ≤ i ≤ r, and let D be the vector of design variables
(such as the y-coordinates of the cubic B-spline control points) that defines the airfoil shape. The lift and
drag coefficients cl(D,α,M) and cd(D,α,M) are functions of the design vector D, the free-stream Mach
number M , and the angle of attack α. With this notation, the multiobjective airfoil optimization problem
can be formulated as follows:

min
D,αi

{
cd(D,α1,M1), cd(D,α2,M2), . . . , cd(D,αr,Mr)

}
subject to cl(D,αi,Mi) = c∗l,i for 1 ≤ i ≤ r and D ∈ F ,

 (6)

where F is the feasible set of airfoil shapes satisfying some geometric constraints (such as fixed LE and
thickness constraints).

A standard approach for solving a multiobjective optimization problem is to construct an aggregated
objective (such as a weighted average) of all the objective functions and to find a Pareto solution of the
original multiobjective optimization problem by minimizing the aggregated objective function. However,
for airfoil shape optimization, Drela4 demonstrated that minimizing a weighted average of drag coefficients
at multiple design conditions leads to an optimal airfoil shape with shock bumps that improve the airfoil
performance at the design conditions but cause performance degradation at off-design conditions.

Motivated by POM,10 we propose to use a design-oriented approach for solving the multiobjective opti-
mization problem. The key idea is to make the optimization algorithm “think” like a designer in search of
a Pareto optimal solution. A designer understands that the final design must have good performance over
the entire range of flight conditions. By trial and error, the designer adaptively learns how to improve the
performance of the current design at one flight condition without adversely degrading the performance at
other flight conditions. It is an art accumulated over many years of design experience. A natural question
is how a design-oriented optimization method should modify the current design to intelligently mimic the
human design process by using the sensitivity information of the objective and constraint functions instead
of human experience and knowledge. During the quest for an answer to this question, a sensible conflict reso-
lution strategy emerged that treats each iteration of multiobjective optimization as optimal decision-making
with limited information. Note that the optimization method’s decision is only based on performance in-
formation at a few design conditions (determined by c∗l,i and Mi) without any knowledge of performance
at off-design conditions. Therefore, it is nontrivial to determine a shape modification that will not incur
off-design performance degradation.
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Modified Profile Optimization Using Smoothest Shape Modification (POSSEM). Let D0 be the
initial design vector (i.e., the y-coordinates of the control points for the B-spline representation of the initial
baseline airfoil). Assume that F is the set of all design vectors D such that the airfoil corresponding to
D has the same thickness as the baseline airfoil at several chord locations (such as the maximum thickness
location and two spar locations) and has the same LE as the baseline. Choose the initial and terminal
maximum drag reduction rates γ0 (with 0.02 ≤ γ0 ≤ 0.04) and γend(≈ 0.01), respectively, and a lower bound
εmin(≥ −0.00005) for acceptable average drag reduction at the design conditions. Let ρ be a scaling factor
(with 0.5 ≤ ρ < 1). Then generate a sequence of design vectors Dk+1 (k = 0, 1, . . .) as follows.

1. Compute the initial feasible angles of attack. Find α1,0, α2,0, . . . , αr,0 such that

cl(D0, αi,0,Mi) = c∗l,i for 1 ≤ i ≤ r.

2. Initialize the performance gain factors. Let τi = 1 for 1 ≤ i ≤ r. Initially, assume that the drag
at each design condition can be reduced simultaneously by a factor of γk. If it does not work, then
adaptively decrease one or more of τi (in step 4) so that the drag at the ith design condition can be
reduced by a factor of τiγk. The use of τi allows a cooperative negotiation among the design conditions
so that the predicted drag reduction rate at one design condition is exactly γk while the predicted drag
reduction rates at other design conditions could be fractions of γk (but no predicted performance loss
is allowed at any design condition).

3. Solve a trust-region subproblem. Let cd,i,k and cl,i,k be the linear Taylor approximations of the
drag and lift coefficients at (Dk, αi,k,Mi):

cl,i,k(∆D,∆αi) = cl(Dk, αi,k,Mi) +
〈

∂cl

∂D
,∆D

〉
+

∂cl

∂α
∆αi,

cd,i,k(∆D,∆αi) = cd(Dk, αi,k,Mi) +
〈

∂cd

∂D
,∆D

〉
+

∂cd

∂α
∆αi,

where all the derivatives are evaluated at (Dk, αi,k,Mi), and 〈·, ·〉 denotes the dot product of vectors.
Consider the following trust-region subproblem for (6):

max
∆D,∆αi

γ such that

Dk + ∆D ∈ F , −δk ≤ S(∆D) ≤ δk,

αmin − αi,k ≤ ∆αi ≤ αmax − αi,k for 1 ≤ i ≤ r,

cl,i,k(∆D,∆αi) = c∗l,i for 1 ≤ i ≤ r,

cd,i,k(∆D,∆αi) ≤ (1− τiγ) · cd(Dk, αi,k,Mi) for 1 ≤ i ≤ r.


(7)

If the optimal objective function value γ∗ of (7) is zero, then Dk is a Pareto optimal solution and
terminate the iteration with Dk as the output. Otherwise, the optimal objective function value γ∗ of
(7) gives a reduction of the linearized drag at the ith design condition by at least a factor of τiγ

∗. Choose
δk > 0 such that the optimal objective function value of (7) is exactly γk. Let (∆Dk,∆α1,k, . . . ,∆αr,k)
be the least norm solution of (7).

4. Adjust the performance gain factors if necessary. Compute the predicted drag reduction rate
at each of the design conditions:

γi,k =
cd,i,k(∆Dk,∆αi,k)− cd(Dk, αi,k,Mi)

cd(Dk, αi,k,Mi)
for 1 ≤ i ≤ r.

If max{γ1,k, γ2,k, . . . , γr,k} > γk (which implies that the trust-region size δk is too large for the required
maximum drag reduction), find the smallest index j such that γj,k = τjγk and τj = max{τ1, τ2, . . . , τr}.
Replace τj by τj/2 and go back to step 3.
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5. Generate the new iterate. Define Dk+1 = Dk + ∆Dk.

6. Find the feasible angles of attack for Dk+1. Use αi,k + ∆αi,k as the initial guess to find αi,k+1

such that cl(Dk+1, αi,k+1,Mi) = c∗l,i for 1 ≤ i ≤ r.

7. Decide whether the new iterate can be accepted. Compute the actual average drag reduction
εave at the design conditions:

εave =
1
r

(
r∑

i=1

cd(Dk+1, αi,k+1,Mi)−
r∑

i=1

cd(Dk, αi,k,Mi)

)
.

Reset the maximum drag reduction rate as follows:

γk+1 =


γk, if εave > εmin and γk = γ0

γk, if εmin < εave < 0.0001

γk/ρ, if εave ≥ 0.0001 and γk < γ0.

If εave > εmin, update k by k + 1 and go back to step 2.

8. Decide whether the iteration should be terminated. If γk = γend, terminate the iteration and
choose the best overall design among D1, . . . , Dk. Otherwise, replace γk by max{ργk, γend} and go
back to step 2.

SSEM refers to finding the smallest δk such that the optimal objective function value of (7) is γk. In non-
technical terms, SSEM searches for the smoothest shape modification among all possible shape modifications
that achieve the given drag reduction rate γk, as predicted by linear approximations of the (nonlinear) lift
and drag coefficients, at the design conditions. As the current configuration moves closer to a (locally) Pareto
optimal shape for the given design conditions, it becomes more difficult to find a smooth shape modification
that leads to a configuration with the same rate of performance gain at all the design conditions. In such a
case, it is necessary to use the performance gain factors τi for facilitating inhomogeneous performance gains
at different design conditions. The rationale behind the adjustment of τi is the following. For the smallest
δk that allows the required drag reduction rate of at least τiγk at the ith design condition for 1 ≤ i ≤ r,
one of the predicted drag reduction rates γi,k might be larger than γk. In such a case, we find an index j
such that the drag reduction by a factor of τjγk at the jth design condition contributes to the requirement
of a larger δk than necessary for the drag reduction by a factor of γk at another design condition. By
reducing the requirement for predicted drag reduction rate at the jth design condition, we try to find the
“right” trust-region size δk such that the drag reduction rate for one design condition is γk, while the drag
reduction rates for the other design conditions are as close to γk as possible. The performance gain factors
τi allow adaptive adjustment of the predicted drag reduction rate at each design condition so that POSSEM
can optimally balance the needs for performance gains at different design conditions and resolve potentially
conflicting demands of the resource (the size of δk) by the design conditions.

Note that unless Dk is a Pareto optimal solution of (6), step 3 of POSSEM always generates a solution.
As long as the average drag reduction at all the design conditions is acceptable (i.e., εave > εmin), we accept
Dk+1 as the new iterate. This strategy is different from minimizing the weighted sum of drag at the design
conditions, because the latter might intentionally seek a good performance gain at one design condition with
performance loss at another design condition. For POSSEM, performance loss at a design condition occurs
only when the linear prediction of drag reduction cannot be realized due to approximation errors, which can
be significant when δk is too large or τiγk is too small.

The termination criterion given in POSSEM is not a mathematical one; instead, it is a heuristic rule. A
small negative value of εmin tolerates a marginal degradation of the performance at the design conditions.
This mechanism allows POSSEM to “escape” from a local Pareto solution and explore other potential
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solutions. The rule for updating the maximum drag reduction rate γk is also based on our experience in
transonic airfoil shape optimization, but it can easily be reformulated by using other rules.

The SSEM not only makes the predicted performance gains more realizable, but also finds a favorable
global shape modification that improves the performance over the range of design conditions, instead of
creating local curvature bumps for airfoil performance gains at just the specified design conditions.

POSSEM is significantly different from the smoothed gradient method used by Jameson and his col-
laborators.6–8 The smoothness of the shape modification in POSSEM is adaptively changing from a very
smooth shape modification initially to relatively smooth shape modification as the design moves closer to
a locally Pareto optimal airfoil. Moreover, the smoothest shape modification in POSSEM always provides
performance gains based on linear predictions of the lift and drag. For the smoothed gradient method,
the separation between smoothing and selection of a descent direction makes it difficult to know how much
smoothing should be applied or whether a smooth shape modification for performance gain is possible if the
smoothed gradient fails to yield a performance gain.

IV. Design Competition

Modern commercial transonic wings are quite efficient, making it difficult to extract aerodynamic perfor-
mance gains of much more than a few percent in typical industrial preliminary design studies.2 In contrast,
the literature is replete with examples of aerodynamic optimization results showing dramatic performance
improvements, with some as large as 50%. In fact, there have been instances in which the utility of a design
method has been obscured by invocation of the “start with a dog” principle in design method promotion,
wherein any design method can be shown to provide dramatic performance improvements provided that the
baseline configuration is sufficiently inappropriate for the application at hand. To preclude the possibility
of exaggerating the capabilities of POSSEM or overlooking its limitations, a design competition was con-
ducted with each of the authors working independently to develop an airfoil design starting from a fairly
well-designed baseline. The first author utilized POSSEM, while the last two authors employed the CDISC
inverse design method.

An additional complicating aspect of the design competition is that the three designs were generated by
using three different flow simulation codes. This feature of the competition not only allows the designers
to expend a minimum amount of effort by using flow solvers and design methods with which they are
most familiar (a feature common to many collaborative design efforts), but also provides some insight into
how flow solver differences impact the characteristics of the designs. The first code, MSES,15 is a coupled
Euler/boundary layer method that provides very rapid turnaround, making it particularly suitable for use in
the early stages of preliminary design. The other two codes, OVERFLOW16 and FUN2D,17,18 are Navier-
Stokes flow solvers that use overset structured grids and unstructured grids, respectively. These codes, which
include a higher level of flow physics and require considerably more time to run than MSES, would typically
be used to fine-tune airfoil designs. This level of flow physics would also be consistent with that used to
evaluate the final three-dimensional configuration with the airfoil integrated into the wing.

For the design competition, the first candidate airfoil was generated by using CDISC with MSES for
a multipoint design, the second candidate airfoil was designed by using CDISC with OVERFLOW, and
the third candidate airfoil was developed through application of the POSSEM method using the adjoint
sensitivity information from FUN2D. Both OVERFLOW and FUN2D were run using the Spalart-Almaras
one-equation turbulence model. To assess any effect of the different flow solvers on the performance charac-
teristics, each of the three candidate airfoils was analyzed by all three codes.

The goal for the design competition is to reduce the average drag at the following four design conditions
without any off-design performance degradation: M1 = 0.7 and c∗l,1 = 0.7, M2 = M3 = M4 = 0.76 with
c∗l,2 = 0.76, c∗l,3 = 0.64, and c∗l,4 = 0.70. The Reynolds number for viscous flow simulations is 30× 106. The
design conditions are representative of those used in industrial applications, with the first condition used to
prevent degradation in the climbout performance and the remaining three conditions used to ensure suitable
performance over the range of lift coefficients to be experienced at the design cruise speed (M = 0.76). Note
that the goal for the design competition is only qualitative in terms of off-design performance degradation;
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further discussion of what exactly that implies is saved until later in the evaluation of the candidate airfoil
designs.

The design of the baseline airfoil D0 was initiated from a seed airfoil extracted from a modern transport
configuration by using CDISC coupled with MSES. To maintain consistency with supercritical airfoil design
rules for the mid-cruise condition of (M = 0.76, cl = 0.7), this seed airfoil was thickened slightly to give
a maximum thickness of 12%. The CDISC flow constraint for “optimum rooftop,” which automatically
determines shock location and the shape of the supersonic rooftop pressure coefficient distribution, was
selected to reduce the wave drag. In an attempt to get good performance over the range of cruise lift
coefficients, we decided to design at the lowest value (cl = 0.64) using the maximum allowable compression
of the supercritical flow. A flow constraint that maintains the original pitching moment was also applied. In
addition to these flow constraints, a geometry constraint that enforces an effective airfoil thickness based on
maximum skin stress between two spar locations was used to maintain the effective thickness of the original
airfoil. This constraint meets the structural requirement while allowing more design freedom than fixed spar
depth constraints.

The new airfoil from this design had significantly better performance than the original seed airfoil. The
average drag at the four design conditions for the new airfoil was 22 counts (i.e., 0.0022 in cd value) less
than the original in spite of being 17 counts worse at (M = 0.70, cl = 0.70). In an effort to improve the
performance at the low Mach design condition, the new design was blended with the original geometry to
produce an airfoil that had equal drag values at M = 0.70 and 0.76 for cl = 0.70. This blending raised the
average drag about 1 count relative to the initial design but was thought to give better overall performance
for the entire range of (M, cl) being considered. However, CDISC’s smoothing still leaves the blended airfoil
with some minor curvature oscillation, resulting in a cubic B-spline interpolation of the airfoil data that has
an oscillatory curvature profile. Thus, we apply CFACS (a spline-based airfoil curvature smoothing code)19

to get rid of the minor curvature oscillation with insignificant geometry modification. The resulting airfoil,
denoted as D0, has smooth curvature with identical performance characteristics as the blended airfoil. The
shape of D0 is defined by 101 grid points on the upper surface and 101 grid points on the lower surface. See
Fig. 1 for the airfoil shape represented by the B-spline interpolation of the grid points.
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Figure 1. Shape of baseline D0 and 206 control points for cubic B-spline representation of D0.

While the approach used to design D0 was selected to give good multipoint performance, it was still
basically a single-point design in that no CDISC design was done at M = 0.70. In an attempt to further
improve upon this case, a dual-point design was carried out with CDISC/MSES starting from D0. The first
design was done at the mid-cruise condition (M = 0.76, cl = 0.70) using the “optimum rooftop” constraint at
80% of the maximum compression and with the pitching moment constrained to be slightly more nose down
(cm = −0.15 instead of −0.14). The second design was at (M = 0.70, cl = 0.76), with the higher cl value
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chosen because the shocks at the lower lift design conditions were already fairly weak. The full maximum
compression value was used for this case, and the pitching moment was not constrained. The effective
thickness constraint was used in both design cases, and additional geometry smoothing was employed at the
second design case to minimize any local curvature bumps that might be generated in weakening the shock
near the leading edge.

As with D0, these two airfoil designs were then blended in a proportion that gave about the same drag
values at M = 0.70 and M = 0.76 for cl = 0.70. The resulting airfoil, designated as D1, has an average drag
improvement of about 3 counts relative to D0. Although this dual-point design approach is fairly simplistic,
it did result in a noteworthy improvement in performance relative to a refined initial airfoil.

While the strategy employed to design D1 can be characterized as a turn-the-crank approach to dual-point
design, the strategy utilized in generating D2 is one of obstinate persistence. Airfoil D2 was generated by
using OVERDISC, which couples CDISC to the OVERFLOW Navier-Stokes code for overset grids. As such,
thickness constraints are the same as those applied to D1; however, pitching moment was unconstrained.

The strategy for this design was to perform sequential parametric variations of variables in the CDISC
flow constraints. For example, for the CDISC constraint “polynomial rooftop,” which was used to define the
characteristics of the supercritical rooftop and shock location, four variables are used to specify the position
of the leading edge peak of the rooftop, the change in cp from the peak to the shock, the chordwise position of
the shock, and an exponent defining the polynomial shape of the rooftop. Hence, the first five intermediate
designs started from D0 and assessed the effect of varying the change in cp from the peak to the shock.
Upon selection of the best setting for this variable, the next three intermediate designs assessed the effect
of varying the chordwise location of the shock, again starting from D0. This process was continued for all
remaining variables in the “polynomial rooftop” constraint and the variables in two other constraints, one on
the airfoil curvature and another on the characteristics of the lower surface pressure coefficient distribution.
In addition, selected intermediate designs were smoothed by using CFACS and were re-evaluated to assess
the multipoint design benefits of smoothing. In all, 35 intermediate designs were generated in developing
the final shape of D2.

While technically a single-point design in that target pressure distributions were developed for and
applied at the design condition of (M = 0.76, cl = 0.76), each design was analyzed at the other three design
conditions. Decisions as to which intermediate designs gave the best result were based on the maximum
L/D value at M = 0.76 (which usually occurred at cl = 0.70), balancing L/D to be roughly equivalent
at cl = 0.76 and cl = 0.64 for M = 0.76, and maintaining lower drag at (M = 0.70, cl = 0.70) than at
(M = 0.76, cl = 0.70).

POSSEM uses FUN2D to compute the aerodynamic coefficients and their derivatives with respect to α
and the control points of a cubic B-spline representation of the airfoil shape. To set up the problem for
FUN2D evaluation of the derivatives of cl and cd, we first compute the cubic B-spline interpolation of the
airfoil data points with the centripetal parameterization. The resulting B-spline curve has 206 control points,
with 4 control points to specify the vertical line segment at the trailing edge (TE) (see Fig. 1).

The design vector D consists of 206 y-coordinates of the control points of a cubic B-spline curve that
represents an airfoil. The feasible set F consists of D, which has a corresponding airfoil that satisfies
the following three conditions: (i) the airfoil has the same thickness as D0 at the chord locations x/c =
0.15, 0.4, 0.6, and 0.95, (ii) the vertical line segment at the TE of the airfoil has the same length as that
of D0, and (iii) the airfoil has the same LE as D0. Chord location x/c = 0.4 is the maximum thickness
(12%) location of D0, while x/c = 0.15 and x/c = 0.6 are spar locations. Fixing the LE point avoids
potentially unnecessary vertical shifting of the airfoil by POSSEM. The first three thickness constraints are
from structural requirements. The thickness constraint at x/c = 0.95 ensures that the airfoil does not become
too thin near the TE because a thin TE segment leads to structural weakness near the TE. For the same
reason, we do not want to reduce the length of the vertical line segment at the TE. Note that the thickness
constraints used by POSSEM are much more restrictive than the constraint on effective thickness of the
airfoil. Because D0 is a fairly well-designed airfoil, we set γ0 = 2%, γend = 1%, ρ = 0.5, and εmin = −0.00005
in POSSEM to generate D3.

One might think that it is unnecessary to use so many design variables for airfoil shape optimization.
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However, another run of POSSEM with 249 control points yields an optimal airfoil with 0.7 count less average
drag at the design conditions than D3 (using FUN2D analysis).

V. Evaluation of Candidate Airfoil Designs

To ensure consistency in the analyses of the three designs with the three different codes, the same grid
point distribution, with 241 grid points on the airfoil surface, is used to generate the computational grids.
The grids used in the CDISC inverse design of D1 and D2 embody the same characteristics as the analysis
grids, but POSSEM uses a grid with 405 grid points on the airfoil surface for the FUN2D-based optimization.
That is, the grid used to generate D3 with POSSEM is quite different from the grid used for evaluation of
D3.
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Figure 2. Pressure coefficient distributions of the baseline and three designs at M = 0.76 for cl = 0.64, 0.70, and
0.76, from the codes used for each design; MSES for D0 and D1; OVERFLOW for D2; FUN2D for D3.

Pressure distributions for the baseline and three designs at the three design conditions for the cruise
speed M = 0.76, as computed from the codes used to construct the designs, are shown in Fig. 2. In the plot
for cl = 0.76, all three designs position the shock at roughly 60% of chord. This result is a little surprising
because D1 uses the CDISC constraint for “optimum rooftop” to automatically determine the rooftop shape
and shock position at (M = 0.76, cl = 0.70), D2 uses the CDISC constraint for “polynomial rooftop” to
explicitly set the shock location based on results from a parametric study of designs at (M = 0.76, cl = 0.76)
with evaluation of the resulting airfoils at the other three conditions, and the shock position of D3 results from
complex trades within the optimization procedure. There is little to distinguish between the rooftops of D2
and D3, with D3 being more oscillatory with slightly more leading edge suction and a stronger compression
after the leading edge peak. The rooftop of D1 is elevated above those of D2 and D3 with a much crisper
shock and stronger aft shock compression; as is shown presently, these differences are primarily due to
differences in the codes. On the lower surface, all three designs generate a stronger aft loading. However, in
what is the most unexpected difference between the designs, D3 also generates more forward loading with
less mid-span loading.

The pressure distributions at cl = 0.70 show similar trends, with the shock position for D1 slightly forward
of that for D2. However, D3 has an extremely smooth rooftop and is essentially shock-free. Conversely, at
cl = 0.64, the rooftop of D3 is quite oscillatory with a strong aft shock, while D2 exhibits a fairly flat
mid-span rooftop and D1 is essentially shock-free with some wobbles.

Differences in the characteristics of the designs due to the different codes used in generating them are
illustrated in Fig. 3, which shows pressure distributions at (M = 0.76, cl = 0.70) for each design as computed
from each of the three codes. Differences in the lower surface pressure distributions computed from the
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Figure 3. Pressure coefficient distributions of the three designs computed by FUN2D, MSES, and OVERFLOW
at (M = 0.76, cl = 0.70).

three codes are insignificant. On the upper surface, the largest difference between the codes is that MSES
predicts a more forward, sharper shock with a stronger aft shock compression for each of the three designs,
thereby providing an explanation of the apparent elevated rooftop level of D1 in Fig. 2. Upper surface
pressure distributions from OVERFLOW and FUN2D are in fairly close agreement; the D1 shock position
from FUN2D is slightly aft of that from OVERFLOW, whereas for D2 and D3, FUN2D predicts shock-
free behavior while OVERFLOW predicts a mild shock at this condition. Particularly noteworthy is that
differences in the shock position and rooftop levels between MSES and OVERFLOW are the largest for D1
and smallest for D3, suggesting that D3 is the least sensitive to code differences among the three designs.
The question as to whether the relative sensitivity of D1 and insensitivity of D3 to code differences are due to
differences in design strategies or differences in the codes with which they were designed remains unresolved
at this time.
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Figure 4. Airfoil shape and upper surface curvature for the baseline D0 and three designs D1, D2, and D3.

The surface shape and upper surface curvature for the baseline and three designs are shown in Fig. 4.
The surface shapes, which are plotted with the leading edge of each airfoil at y/c = 0.0, indicate that the
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change in incidence from the baseline is largest for D2 (a decrease) and smallest for D3 (a slight increase).
Plots of the thickness (not shown) indicate that D1 and D2 both increase the thickness of the forward spar by
roughly 2% and decrease the thickness of the aft spar by roughly 0.8% with D2 showing a slight reduction in
the maximum thickness (less than 0.1%), while D3 preserves the thickness at both spars and the maximum
thickness. As noted above, these differences are due to the use of different thickness constraints within
CDISC and POSSEM. Plots of the camber (also not shown) indicate decreases in the camber of D1 and
D2 over the forward 50% of chord by as much as 45% with increases in camber over the aft end, while D3
decreases the camber over the first 70% of chord by as much as 120% while essentially maintaining the aft
camber.

The curvature plot shows a close-up of the detail of the upper surface curvature because that is the
area where severe oscillations are frequently generated in multipoint optimizations of transonic airfoils. The
curvature profiles of the baseline and D2 are extremely smooth, as both designs were run through the airfoil
curvature smoothing code CFACS. D1 is also fairly smooth owing to the smoothing invoked within the
CDISC design process; the minor oscillations, particularly at x/c = 0.55, are generated during the procedure
used to blend the point designs for flight conditions (M = 0.70, cl = 0.76) and (M = 0.76, cl = 0.70),
respectively. Airfoil D3 is the least smooth of the designs, with notable curvature oscillations at x/c = 0.1 and
0.4; nevertheless, its curvature is considerably smoother than that seen with more conventional multipoint
optimizations. Also worthy of note is that the curvature of D3 at the trailing edge decreases sharply, with the
upper surface shape at the tip of the trailing edge becoming convex rather than concave, while the trailing
edge curvature for D2, which is half the magnitude of that for the baseline and D1, was explicitly designed
into the shape using a curvature constraint within CDISC.
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Figure 5. Drag history and average drag history from POSSEM with D3 as the tenth iterate.

Of particular interest in evaluating the behavior of POSSEM is that, although its formulation is based on
the SSEM, D3 still embodies some notable curvature oscillations. This behavior can be explained, or perhaps
rationalized, by considering both the drag history and upper surface curvature profiles at intermediate
iterations, as shown in Figs. 5 and 6. The drag history in Fig. 5 indicates a steady decline in drag at
all four design conditions through iteration 4. Beyond that, there is a fairly steady decline in drag at
(M = 0.76, cl = 0.76) and to a lesser extent at (M = 0.70, cl = 0.70), but the drag at (M = 0.76, cl = 0.64)
and (M = 0.76, cl = 0.70) more or less oscillates about some mean value. Likewise, the curvature of the
intermediate designs is smooth through iteration 4, after which oscillations begin to appear and continue
to grow with further iterations (see Fig. 6). Hence, as the later iterations proceed and POSSEM tries
to harvest subtle performance gains, it is forced to use a relatively large δk for the shape modification,
which in turn introduces curvature oscillations. Clearly, after iteration 4, POSSEM cannot find a smooth
shape modification that would improve the performance for at least one design condition while maintaining
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Figure 6. Airfoil shapes and their upper surface curvature profiles from POSSEM at intermediate iterates.

the performance at other design conditions. The average drag reduction tolerance εmin = −0.00005 allows
POSSEM to accept a minor performance loss at iteration 5 in hope of “escaping” the current local Pareto
solution. Over the next two iterations, POSSEM was able to find iterate 7 that has lower drag at (M =
0.76, cl = 0.76) than iterate 4, and maintains the same performance as iterate 4 at the other design conditions.

Note that iterates 4 and 7 have almost identical shapes but iterate 7 has more oscillatory upper surface
curvature (see Fig. 6), suggesting that POSSEM was searching for places on the airfoil surface to put minor
curvature oscillations for reducing the shock strength at (M = 0.76, cl = 0.76), with no adverse effects on
performance at the other design conditions. If such a strategy is deemed undesirable, then one could set
εmin = 0 (i.e., not accepting any average performance loss) and terminate POSSEM after iteration 4. A total
of about 0.75 counts of average drag reduction was accumulated during the three iterations after iteration
7 (see Fig. 5), which along with the large difference between iterate 7 and iterate 10 (see Fig. 6) attests
to the fact that POSSEM was using unreliable linear predictions of the aerodynamic coefficients (caused in
part by large δk) to search for marginal performance improvement. As a result, curvature oscillations of the
airfoil shape increase dramatically during these three iterations. Moreover, once curvature oscillations exist
in the shape, POSSEM does not have the capability to take them out (which is precisely why the baseline
definition embodies an airfoil that has been smoothed with CFACS). Also of interest is that the major change
in camber occurs between iteration 7 and iteration 10, while the sharp reduction in trailing edge curvature
happens between iterations 10 and 13. Iterate 12 has a negligibly better overall performance at the design
conditions than iterate 10, with performance trades among the design conditions. The choice of iterate 10
instead of iterate 12 as D3 is due to the better performance of iterate 10 at the mid-cruise condition of
(M = 0.76, cl = 0.70).

We begin the discussion on the performance of the three designs by considering the drag polars at
M = 0.76 for each of the designs as computed by each of the codes, which are shown in Fig. 7. Differences
in absolute drag levels (about 0.0020 in cd) between MSES and the two Navier-Stokes codes are quite large,
with MSES levels on the order of 20 counts lower. Differences between drag levels from OVERFLOW and
FUN2D are more subtle, with FUN2D exhibiting larger drag levels at lower lift coefficients and smaller drag
levels at higher lift coefficients. Hence, whereas FUN2D predicts larger drag levels at cl = 0.64 than at
cl = 0.70 for D0, D1, and D3, both MSES and OVERFLOW indicate that the drag at cl = 0.64 is lower
than that at cl = 0.70 for all four designs.

The expectation going into this multicode design effort was that the design from each code would be
the best performer within that code, which is quite common in a simulation-based collaborative design
environment. The drag polar confirms this expectation for the CDISC generated designs. Within MSES, D1
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Figure 7. Drag polars of the baseline D0 and three designs D1, D2, and D3 at M = 0.76 as computed from
MSES, OVERFLOW, and FUN2D.

substantially outperforms D2 except at the highest lift levels, whereas within OVERFLOW, D2 substantially
outperforms D1 everywhere. Somewhat surprising, though, is that the performance of D3 is competitive
with D1 in MSES, having higher drag at low lift levels balanced by lower drag at high lift levels, while
exhibiting virtually identical performance to D2 within OVERFLOW. Within FUN2D, the performance of
D3 is marginally better than that of D2 except below cl = 0.64, and much better than that of D1 everywhere.

A somewhat different perspective on the performance of the three designs can be gleaned from plots of
the lift to drag ratio, as shown in Fig. 8. Here the MSES results indicate that the maximum L/D values
for D1 and D3 are almost the same, with the D3 curve essentially representing a shift to higher cl levels,
while the maximum L/D value for D2 is substantially lower than that of the baseline as well as D1 and D3.
Differences in the curves between OVERFLOW and FUN2D primarily lie in the fact the maximum L/D
values for all three designs lie around cl = 0.70 in OVERFLOW and cl = 0.73 in FUN2D.
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Figure 8. Lift to drag ratio of the baseline D0 and three designs D1, D2, and D3 at M = 0.76 as computed
from MSES, OVERFLOW, and FUN2D.

The relatively poor performance of D2 within MSES and D1 within OVERFLOW and FUN2D can be
explained in part by examining once again the pressure distributions. Pressure distributions from MSES for
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Figure 9. Pressure coefficient distributions of the baseline D0 and three designs D1, D2, and D3, computed
by MSES at M = 0.76.

the three designs at the three design conditions with M = 0.76 are shown in Fig. 9. At cl = 0.64, D1 is
essentially shock-free while both D2 and D3 exhibit a double shock and the elevated drag levels associated
with this feature. Conversely, at cl = 0.76, the shock is located at roughly the same position for all three
designs but a stronger shock, hence greater drag, is exhibited by D1. The situation at cl = 0.70 is less
obvious, as the pressure distributions for D2 and D3 are quite similar with the shock located forward of that
for D1, while the shock strengths for all three designs are roughly the same. Although the expansion aft
of the shock is significantly more pronounced for D2 than for D3, it does not completely explain the large
performance penalty exhibited by D2 at cl = 0.70; the performance of D3 is marginally better than that of
D1 at this condition. Instead, one must consider the fact that pressure drag is a function of not only the
pressure distribution but also the underlying surface shape upon which it acts; apparently, the shape of D2
is poorly suited in this regard.

Pressure distributions from FUN2D for the three designs at the three design conditions with M = 0.76,
which are quite similar to those from OVERFLOW, are shown in Fig. 10. Here, the poor performance of
D1 is easily ascertained as it exhibits significantly stronger shocks than those exhibited by D2 and D3 at all
three conditions.

In evaluating the overall performance of the designs, including the performance at the fourth design
condition of (M = 0.70, cl = 0.70), which has yet to be addressed, we begin by considering the average drag
of each of the designs. Table 1 shows the average drag coefficient at the four design conditions for D0, D1,
D2, and D3 (airfoil D3s is discussed below) as computed by the three flow solvers. Numbers in the last row
are the averages of the previous three rows. No matter which flow simulation code is used in the analysis,
all three designs have lower average drag than D0 at the design conditions, while D3 has the lowest average
drag among all the candidate airfoil designs.

D0 D1 D2 D3 D3s
MSES 0.00960 0.00933 0.00938 0.00924 0.00924
OVERFLOW 0.01158 0.01141 0.01096 0.01096 0.01096
FUN2D 0.01171 0.01139 0.01095 0.01091 0.01086
Average 0.01096 0.01071 0.01043 0.01037 0.01035

Table 1. Average drag coefficients at design conditions
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Figure 10. Pressure coefficient distributions of the baseline D0 and three designs D1, D2, and D3, computed
by FUN2D at M = 0.76.
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Figure 11. Drag rise curves computed by MSES for the baseline D0 and three designs D1, D2, and D3.

Additional detail on the global behavior of the designs is provided by considering drag rise characteristics.
Drag rise curves from MSES at the three specified lift coefficients are shown in Fig. 11. The first point to
note from these results is that the drag at (M = 0.70, cl = 0.70) is substantially lower for D3 than for the
other designs, providing an explanation for why the average drag levels for D3 are so favorable even in MSES.
Airfoils D1 and D2 also have significantly lower drag than the baseline at this condition. Of equal interest
is that D0, D1, and D3 exhibit pronounced drag buckets in the vicinity of M = 0.76 when cl = 0.76, with
the extent of the drag bucket decreasing as the lift coefficient decreases. However, the drag bucket for D2
is quite mild at cl = 0.76 and nonexistant at the lower lift coefficients. Even though D3 has no off-design
performance degradation (i.e., the drag rise curve does not have inverted V shape between the design Mach
numbers) when analyzed by FUN2D, it exhibits severe off-design performance degradation at M = 0.74 for
cl = 0.7 when analyzed by MSES.

Drag rise curves from OVERFLOW and FUN3D, which are quite similar, exhibit similar trends to those
from MSES, but with some significant differences. The drag rise curves, computed by FUN2D and shown
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in Fig. 12, indicate that the drag buckets of D0 and D1 are much less pronounced than those computed by
MSES at cl = 0.76 and nonexistant at lower lift coefficients. Moreover, drag buckets for D3 occur at Mach
numbers well below M = 0.76. For D2, once again the drag rise curves are quite smooth, with the drag rise
curve for cl = 0.76 being nearly monotonic.
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Figure 12. Drag rise curves computed by FUN2D for the baseline D0 and three designs D1, D2, and D3.

Of equal importance to drag rise characteristics in assessing aircraft performance is the Mach variation
of ML/D, which provides an indication of the range of the aircraft. Mach variations of ML/D computed
by FUN2D at the three specified lift coefficients are shown in Fig. 13. Of particular interest here is that
the ML/D curves for D3 are significantly less oscillatory than the drag rise curves. Also worthy of note is
that the ML/D value for D2 or D3 at the cruise speed M = 0.76 achieves the maximum or is close to the
maximum for each of the three lift coefficients, whereas for D0 or D1, the maximum ML/D value occurs at
M = 0.74.
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Figure 13. Mach variation of ML/D computed by FUN2D for the baseline D0 and three designs D1, D2, and
D3.

The previous discussion leads to the consideration of robustness in the designs. In fact, a major impetus
in developing the POM and POSSEM optimization methods has been to provide an optimizer capable of
generating designs with robust performance. Unfortunately, definitions of robustness vary, from simple math-
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ematical formulations based on the variance in the performance under the influence of small perturbations to
the flight conditions, to more esoteric formulations involving aggregate performance over the range of flight
conditions a vehicle is most likely to experience in operation. Moreover, it is unclear to the authors as to
whether an appropriate measure of robustness exists for airfoil designs. As the nuances of the subject are
well beyond the intent of this paper, for now we consider a robust airfoil to be one for which the performance
variations with respect to changes in Mach number are not oscillatory, while also maximizing enhancements
in performance across different analysis codes. Clearly, the first aspect of this definition as applied to the
drag rise curves favors D2, while the Mach variation of ML/D along with the second aspect of our definition
of robustness favors D3.

Finally, we consider whether it is possible to use CFACS to smooth the curvature oscillations of D3 in a
manner which yields a better performing and more robust airfoil than D3. Plots of the upper surface curvature
for such a smoothed variant, denoted as D3s, along with the pressure distribution at (M = 0.76, cl = 0.64),
are shown in Fig. 14. The surface curvature plot indicates that CFACS has smoothed out all curvature
oscillations in D3, while also eliminating the sharp drop in curvature at the airfoil trailing edge. The
pressure distribution indicates that the smoothed airfoil nearly eliminates inflections in the rooftop shape
while reducing the shock strength. It also lowers the leading edge suction peak, which tends to increase
performance at lower Mach numbers but hurts performance at higher Mach numbers.
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Figure 14. Upper surface curvature and pressure coefficient distribution computed by FUN2D at (M = 0.76, cl =
0.64) for D3 and its smoothed variant D3s.

As shown previously in Table 1, the average drag computed by FUN2D for D3s is lower than that
for D3, while the average drag values computed by MSES and OVERFLOW are unchanged. Drag rise
curves computed by FUN2D and the Mach variation of ML/D for D3 and D3s, shown in Fig. 15, indicate
that D3s improves the performance at three of the four design points, with significant improvements at
(M = 0.70, cl = 0.70) and (M = 0.76, cl = 0.64) and a significant penalty at (M = 0.76, cl = 0.76).
Moreover, both the drag and ML/D curves for D3s are much less inflectional than those for D3 with
performance improvements at most of the off-design conditions. However, drag polar plots at M = 0.76 (not
shown) indicate that the maximum L/D value for D3s is about 0.3 lower than that for D3.

In summary, POSSEM can generate smooth optimal airfoils with no off-design performance degradation,
resolving two technically challenging problems encountered by multipoint airfoil shape optimization in a
high-resolution design space. One could also allow POSSEM to put minor curvature oscillations on the
airfoil surface for performance gains at high speed and high lift design condition(s) with minimum or no
performance degradation at other flight conditions. Minor curvature oscillations of airfoils generated by
POSSEM could be smoothed out by CFACS with no adverse effect on overall performance of the airfoils.
Moreover, optimal airfoils generated by POSSEM are as realistic as those generated by designers.
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Figure 15. Drag rise curves (bottom curves) and Mach variation of ML/D (top curves) computed by FUN2D
for D3 and its smoothed variant D3s at cl = 0.64, 0.70, and 0.76.

On the other hand, D3 with the lowest average drag at the design conditions is only about 6% better than
D0, an airfoil quickly designed by using CDICS with MSES for flow simulation. This result really shows the
power of the knowledge-based inverse design tool CDISC for capturing the main performance gain by using
very simple inverse design rules for transonic aerodynamic shape design. Also, the marginal performance
advantage of D3 over D2 shows that CDISC is a very powerful inverse design tool for subtle performance
gains when it is appropriately used. In particular, smoothing the curvature of the airfoil designed for one
flight condition with high lift and high speed is likely to promote performance at flight conditions of lower
lift or lower speed, with minor performance loss at the design condition. This approach for inverse design
leads to airfoil D2 with good performance over the range of flight conditions.

VI. Concluding Remarks

Use of a low-resolution design space, as represented by a geometry model with a few shape parameters,
is usually sufficient during the conceptual design of aerodynamic shapes. However, in a preliminary design
environment it becomes necessary to use a high-resolution design space, as represented by a geometry model
with as many as hundreds of shape parameters, particularly when searching for subtle performance gains
from a fairly good baseline. Two technically challenging issues related to airfoil shape optimization in
high-resolution design space are undesirable optimal airfoil shapes due to high-frequency components in the
parametric airfoil model and off-design performance degradation due to lack of information on off-design
performance within the optimization process. To resolve these two issues, we propose the use of a smoothest
shape modification strategy along with simultaneous drag reduction at all the design conditions within the
airfoil shape optimization procedure. The resulting airfoil optimization method is called POSSEM.

The smoothness measure for a shape modification ∆g(t) is the magnitude of the third derivative of ∆g(t).
To get the last bit of performance gain, POSSEM may have to use shape modifications with relatively large
third derivative bounds, resulting in an optimal airfoil with minor curvature oscillations. But minor curvature
oscillations can easily be smoothed out by CFACS with no adverse effect on the overall performance of the
optimal airfoil.

The utility of POSSEM is examined by conducting a design competition with the objective of improving
a fairly well-designed baseline airfoil at four transonic flight conditions without incurring any off-design
performance degradation. Three designs are generated independently, with the first two using the CDISC
inverse design method in conjunction with the flow solvers MSES and OVERFLOW, respectively, and the
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third using POSSEM in conjunction with the flow solver FUN2D. Pros and cons of all the airfoil designs are
documented along with in-depth analyses of the simulation results. Results from this study indicate that
POSSEM largely resolves the two issues related to airfoil optimization in a high-resolution design space,
generating an optimal airfoil with fairly smooth curvature that improves the performance of the baseline
at multiple design conditions with no performance degradation at off-design conditions. Moreover, the
performance of the airfoil generated by POSSEM is competitive or better than that of the CDISC-generated
airfoils no matter which flow solver is used in the analysis, implying that performance gains achieved by
smooth global shape modifications are less code-dependent.

To our knowledge, this study is the first successful attempt in generating realistic optimal airfoil designs
through optimization in a high-resolution design space parameterized by a geometry model with over 200
shape design variables. The key to this success is the insistence on a smooth global shape modification in the
formulation of POSSEM, which is necessary to ensure accurate linear Taylor approximations of the nonlinear
aerodynamic coefficients as defined within Sobolev space.

Finally, we would like to point out that the smoothest shape modification and modified profile optimiza-
tion strategies used in POSSEM are also applicable to three-dimensional aerodynamic shape optimization,
provided that sensitivity information of the lift and drag coefficients with respect to the aerodynamic shape
is available.
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